Статистика сайта

В Архиве зарегистрировано 34437 фактов из 176 стран, относящихся к 1176 феноменам. Из них раскрыто 2799, еще 10619 находятся в стадии проверки на соответствие одной из 319 версий.

1 фактов было добавлено за последние сутки.

Поделиться историей

Вы находитесь в разделе "Версии"

Этот раздел включает информацию о возможных версиях, объясняющих истинную природу события, описанного в факте.

Самонагревание и самовозгорание

Добавлен ср, 12/10/2016
Источники
Феномены
Тип версии

Горение – сложный физико-химический процесс превращения компонентов горючей смеси в продукты сгорания с выделением теплового излучения, света и лучистой энергии. Приближенно можно описать природу горения как бурно идущее окисление.
Дозвуковое горение (дефлаграция) в отличие от взрыва и детонации протекает с низкими скоростями и не связано с образованием ударной волны. К дозвуковому горению относят нормальное ламинарное и турбулентное распространения пламени, к сверхзвуковому — детонацию.

Горение подразделяется на тепловое и цепное. В основе теплового горения лежит химическая реакция, способная протекать с прогрессирующим самоускорением вследствие накопления выделяющегося тепла. Цепное горение встречается в случаях некоторых газофазных реакций при низких давлениях.

Условия термического самоускорения могут быть обеспечены для всех реакций с достаточно большими тепловыми эффектами и энергиями активации.

Горение может начаться самопроизвольно в результате самовоспламенения либо быть инициированным зажиганием. При фиксированных внешних условиях непрерывное горение может протекать в стационарном режиме, когда основные характеристики процесса – скорость реакции, мощность тепловыделения, температура и состав продуктов – не изменяются во времени, либо в периодическом режиме, когда эти характеристики колеблются около своих средних значений. Вследствие сильной нелинейной зависимости скорости реакции от температуры, горение отличается высокой чувствительностью к внешним условиям. Это же свойство горения обусловливает существование нескольких стационарных режимов при одних и тех же условиях (гистерезисный эффект).

Различают следующие виды горения: самовоспламенение, самовозгорание, вспышка, воспламенение, взрыв.

Самовоспламенение – горение, возникающее от внешнего нагревания вещества до определенной температуры без не посредственного соприкосновения горючего вещества с пламенем внешнего источника горения.

Самовозгорание – горение твердых веществ, возникающее от нагревания их под влиянием процессов, происходящих внутри самого вещества. Происходящие физические или химические процессы внутри вещества связаны с образованием тёпла, которое ускоряет процесс окисления, переходящий в горение открытым огнем.

Вспышка – быстрое, но, сравнительно со взрывом, кратко временное сгорание смеси паров горючего вещества с воздухом или кислородом, возникающее от местного повышения темпера туры, которое может быть вызвано электрической искрой или прикосновением к смеси пламени или накаленного тела. Температура, при которой происходит вспышка, называется температурой вспышки. Явление вспышки схоже с явлением взрыва, но, в отличие от последнего, оно происходит без сильного звука и не оказывает разрушительного действия.

Воспламенение – стойкое возгорание смеси паров и газов горючего вещества от местного повышения температуры, которое может быть вызвано прикосновением пламени или накаленного тела. Воспламенение может длиться до тех пор, пока не сгорит весь запас горючего вещества, причем парообразование при этом происходит за счет тепла, выделяющегося при сгорании.

Воспламенение отличается от вспышки своей продолжительностью. Кроме того, при вспышке тепловыделение в каждом участке достаточно для поджигания смежного участка уже готовой горючей смеси, но недостаточно для пополнения ее путем испарения новых количеств горючего; поэтому, истратив запас горючих паров, пламя гаснет и вспышка на этом кончается, пока снова не накопятся горючие пары и не получат местного перегрева. При воспламенении же парообразующее вещество бывает доведено до такой температуры, что теплоты сгорания накопившихся паров оказывается достаточно для восстановления запаса горючей смеси.

Взрыв – мгновенное сгорание или разложение вещества, сопровождающееся выделением огромного количества газов, которые мгновенно расширяются и вызывают резкое повышение давления в окружающей среде. При соприкосновении с воздухом: газообразные продукты разложения некоторых веществ обладают способностью воспламеняться, что не только приводит к разрушениям от действия взрывной волны, но и вызывает большие пожары.
Так же выделяют самораспространяющийся высокотемпературный синтез (СВС), – химический процесс, протекающий с выделением тепла в автоволновом режиме типа горения и приводящий к образованию твердых продуктов. СВС представляет собой режим протекания экзотермической реакции, в котором тепловыделение локализовано в слое и передается от слоя к слою путем теплопередачи.

Треугольник горения

Чтобы произошло возгорание, необходимы три фактора:

  1. тепло
  2. кислород
  3. горючее вещество (топливо)

Смысл вопроса в том, что только тогда, когда эти три составляющих налицо в надлежащей пропорции - может возникнуть пламя.

Существует так же беспламенное горение. В отличие от обычного горения, когда наблюдаются зоны окислительного пламени и восстановительного пламени, возможно создание условий для беспламенного горения. Примером может служить каталитическое окисление органических веществ на поверхности подходящего катализатора, например, окисление этанола на платиновой черни.

Пожар - это неконтролируемое горение вне специального очага.

1. Горючее вещество (топливо)
Горючие вещества (материалы) – вещества (материалы), способные к взаимодействию с окислителем (кислородом воздуха) в режиме горения. По горючести вещества (материалы) подразделяют на три группы:

  • негорючие вещества и материалы не способные к самостоятельному горению на воздухе;

  • трудногорючие вещества и материалы – способные гореть на воздухе при воздействии дополнительной энергии источника зажигания , но не способные самостоятельно гореть после его удаления;

  • горючие вещества и материалы – способные самостоятельно гореть после воспламенения или самовоспламенения самовозгорания .

Горючие вещества (материалы) – понятие условное, так как в режимах, отличных от стандартной методики, негорючие и трудногорючие вещества и материалы нередко становятся горючими.
Среди горючих веществ имеются вещества (материалы) в различных агрегатном состоянии: газы, пары, жидкости, твёрдые вещества (материалы), аэрозоли. Практически все органические химические вещества относятся к горючим веществам. Среди неорганических химических веществ также имеются горючие вещества (водород, аммиак, гидриды, сульфиды, азиды, фосфиды, аммиакаты различных элементов).
Горючие вещества (материалы) характеризуются показателями пожарной опасности. Введением в состав этих веществ (материалов) различных добавок (промоторов, антипиренов, ингибиторов) можно изменять в ту или иную сторону показатели их пожарной опасности.[3]

2. Окислитель
Окислитель является второй стороной треугольника горения. Обычно в качестве окислителя при горении выступает кислород воздуха, однако могут быть и другие окислители - окислы азота и т.п.
Критическим показателем для кислорода воздуха как окислителя, является его концентрация в воздушной среде закрытого судового помещения в объемных пределах выше 12-14%. Ниже этой концентрации горение абсолютного большинства горючих веществ не происходит. Однако некоторые горючие вещества способны гореть и при более низких концентрациях кислорода в окружающей газовоздушной среде.

3. Температура возгорания (тепло)
Есть много понятий, применяемых к температурам, при которых возможно возгорание. Главнейшие из них:
Температура вспышки - наименьшая температура, при которой вещество выделяет достаточно горючих для воспламенения паров, при воздействии открытым пламенем, но горение не продолжается.
Температура воспламенения - наименьшая температура, при которой вещество дает достаточно горючих испарений для возгорания и продолжения горения при приложении открытого пламени.
Примечание. Можно заметить, что разница между температурой вспышки и температурой горения в том, что в первом случае происходит мгновенная вспышка, а во втором температура должна быть достаточно высока, чтобы производить достаточно горючих паров для горения, независимо от источника возгорания.
Самовоспламенение - это быстрое самоускорение экзотермической химической реакции, приводящее к появлению яркого свечения - пламени. Самовоспламенение происходит в результате того, что при окислении материала кислородом воздуха образуется тепла больше, чем успевает отводиться за пределы реагирующей системы. Для жидких и газообразных горючих веществ это возникает при критических параметрах температуры и давления.

Кривая интенсивности горения

Важно полностью представлять, как обычно развивается пожар. Если исключить взрывы и вспышки, то процесс горения можно разделить на четыре следующих периода:

  1. период загорания
  2. развития пожара
  3. период горения
  4. период затухания

В этой связи показательно, что обычно пожар распространяется вверх очень быстро, в сторону - с относительно малой скоростью, а вниз - очень медленно.

Это можно проиллюстрировать так: Если горение возникло (треугольник замкнулся), действия по тушению пожара должны быть направлены на то, чтобы вывести показатели треугольника (хотя бы один) за переделы критических величин - разорвать треугольник горения. Это и есть теоретическая основа горения и тушения.

В зависимости от агрегатного состояния горючих компонентов (окислителя или горючего) различают три вида горения.

  • Гомогенное горение – горение газов и парообразных горючих веществ в среде газообразного окислителя.

  • Гетерогенное горение – горение жидких и твердых топлив (горючих веществ) в среде газообразного окислителя. Разновидностью гетерогенного горения является горение жидких капель топлива.

  • Горение взрывчатых веществ и порохов.

По скорости распространения пламени горение подразделяется на дефлаграцию и детонацию. Дефлаграционное горение – это такой режим горения, при котором пламя распространяется с дозвуковой скоростью. При детонации пламя распространяется со сверхзвуковой скоростью, например, в воздухе – со скоростью более 300 м/с. Дозвуковое горение подразделяется на ламинарное и турбулентное. Скорость ламинарного горения зависит от состава смеси, начальных значений температуры и давления, а также от скорости химических превращений в пламени. Скорость распространения турбулентного пламени помимо указанных факторов зависит от скорости потока, степени и масштаба турбулентности.

Самовозгорание

Самовозгорание, возникновение горения в результате самонагревания горючих твердых материалов, вызванного самоускорением в них экзотермич. реакций. Самовозгорание происходит из-за того, что тепловыделение в ходе реакций больше теплоотвода в окружающую среду.

Начало самовозгорания характеризуется температурой самонагревания (Tсн), представляющей собой минимальную в условиях опыта температуру, при которой обнаруживается тепловыделение.

При достижении в процессе самонагревания определенной температуры, называемой температурой самовозгорания (Tсвоз), возникает горение материала, проявляющееся либо тлением, либо пламенным горением. В последнем случае Tсвоз адекватна температуре самовоспламенения (Tсв), под которым в пожарном деле понимают возникновение горения газов и жидкостей при нагревании до некоторой критической температуры. (см. Воспламенение в пожарном деле). В принципе самовозгорание и самовоспламенение по физической сущности сходны и различаются лишь видом горения, самовоспламенение возникает только в виде пламенного горения.

В случае самовоспламенения самонагревание (предвзрывной разогрев) развивается в пределах всего нескольких градусов и поэтому не учитывается при оценке пожаровзрывоопасности газов и жидкостей. При самовозгорании область самонагревания может достигать нескольких сотен градусов (например, для торфа от 70 до 225 °С). Вследствие этого явление самонагревания всегда учитывается при определении склонности твердых веществ к самовозгоранию.

Самовозгорание изучают путем термостатирования исследуемого материала при заданной температуре и установления зависимости между температурой, при которой возникает горение, размерами образца и временем его нагрева в термостате.

Процессы, происходящие при самовозгорании образцов горючего материала, изображены на рисунке. При температурах до Tсн (напр., T1) материал нагревается без изменений (тепловыделение отсутствует). При достижении Tсн в материале происходят экзотермические реакции. Последние в зависимости от условий накопления теплоты (масса материала, плотность упаковки его атомов и молекул, продолжительность процесса и т. д.) могут после периода небольшого самонагревания по исчерпании способных саморазогреваться компонентов материала завершиться охлаждением образца до начальной температуры термостата (кривая 1) либо продолжать самонагреваться вплоть до Tсвоз (кривая 2). Область между Тсн и Tсвоз потенциально пожароопасна, ниже Tсн-безопасна.

Возможность самовозгорание материала, находящегося в потенциально пожароопасной области, устанавливают с помощью уравнений:

где Tокр-температура окружающей среды, °С; l-определяющий размер (обычно толщина) материала; т-время, в течение которого может произойти самовозгорание; A1, n1 и А2, n2-коэффициент, определяемые для каждого материала по опытным данным.

По уравнению (1) при заданном l находят Tокр, при которой может возникнуть самовозгорание данного материала, по уравнению (2)-при известной Токр величину т. При температуре, ниже вычисленной Tокр , или при т, меньшем, чем время, рассчитанное по уравнению (2), самовозгорание не произойдет.

В зависимости от природы первоначального процесса, вызвавшего самонагревание материала, и значений Tсн различают самовозгорание:

  • химическое
  • микробиологическое
  • тепловое

К химическому самовозгоранию относятся экзотермическое взаимодействие веществ (например, при попадании концентрированной HNО3 на бумагу, древесные опилки и др.). Наиболее типичный и распространенный пример такого процесса - самовозгорание промасленной ветоши или иных волокнистых материалов с развитой поверхностью. Особенно опасны масла, содержащие соединения с ненасыщенными химическими связями и характеризующиеся высоким йодным числом (хлопковое, подсолнечное, джутовое и т.д.). К явлениям химического самовозгорания относится также загорание ряда веществ (например, мелкораздробленный Аl и Fe, гидриды Si, В и некоторых металлов, металлоорганических соединений - алюминийорганические и др.) при контакте их с воздухом в отсутствие нагрева. Способность веществ к самовозгоранию в таких условиях называют пирофорностью. Особенность пирофорных веществ заключается в том, что их Tсвоз (или Tсв) ниже комнатной температуры: - 200°С для SiH4, — 80 °С для А1(С2Н5)3. Для предупреждения химического самовозгорание порядок совместного хранения горючих веществ и материалов строго регламентирован.

Существует так же вид химических реакций веществ, который связан с взаимодействием с водой или влагой. При этом также выделяется достаточная для самовозгорания веществ и материалов температура. Примерами могут служить такие вещества, как калий, натрий, карбид кальция, негашеная известь и др. Особенностью щелочноземельных металлов является их способность гореть и без доступа кислорода. Необходимый для реакции кислород они добывают сами, расщепляя под действием высокой температуры влагу воздуха на водород и кислород. Вот почему тушение водой таких веществ приводит к взрыву образующегося водорода.

Склонностью к микробиологическому самовозгоранию обладают горючие материалы, особенно увлажненные, служащие питательной средой для микроорганизмов, жизнедеятельность которых связана с выделением теплоты (торф, древесные опилки и др.). По этой причине большое число пожаров и взрывов происходит при хранении сельскохозяйственных продуктов (например, силос, увлажненное сено) в элеваторах. Для микробиологического и химического самовозгорания характерно то, что Tсн не превышает обычных значений Токр и может быть отрицательной. Материалы, имеющие Tсн выше комнатной температуры, способны к тепловому самовозгоранию.

Вообще склонностью ко всем видам самовозгорания обладают многие твердые материалы с развитой поверхностью (например, волокнистые), а также некоторые жидкие и плавящиеся вещества, содержащие в своем составе непредельные соединения, нанесенные на развитую (в том числе негорючую) поверхность. Расчет критических условий для химического, микробиологического и теплового самовозгорания осуществляется по уравнениям (1) и (2).

Интересные факты о пламени

Из-за притяжения Земли при горении возникает конвекция (движение воздуха): нагретый воздух становится легче и устремляется вверх, а холодный снизу приходит ему на смену. Этот поток воздуха приводит к значительному градиенту температуры вдоль пламени.

Схематическое изображение пламени свечи с указанием температуры в его различных точках при горении в нормальных условиях

Поэтому пламя свечи в невесомости выглядит несколько иначе:

Жёлто-оранжевый цвет верхушки пламени в обычных условиях обусловлен свечением частичек сажи, уносимых вверх поднимающимся потоком горячего воздуха. Сажа – это микрочастицы, содержащие углерод, не успевший сгореть, т.е. превратиться в СО2. В невесомости пламя свечи меньше по размеру и не такое горячее, как обычно, т.к. нет достаточного притока свежего воздуха, содержащего кислород. Поэтому сажи очень мало, т.к. она не образуется при температуре ниже 1000 °С. Но, даже если бы её и было достаточно, и тогда из-за низкой температуры она светилась бы в инфракрасном диапазоне, а значит, цвет у пламени в невесомости всегда голубоватый.

Так же цвет пламени зависит от того, какие элементы «сгорают» в нём. Высокая температура пламени даёт возможность атомам перескакивать на некоторое время в более высокие энергетические состояния, а потом, возвращаясь в исходное состояние, излучать свет определённой частоты, которая соответствует структуре электронных оболочек данного элемента. Например, газовая горелка горит голубым пламенем из-за наличия CO, угарного газа, а жёлто-оранжевое пламя спички объясняют наличием солей натрия в древесине.

Список базовой литературы по этой тематике:

Основная литература
1. Я.Б. Зельдович, Г.И., Г.И. Баренблатт, В.Б. Либрович, Г.М. Махвиладзе. Математическая теория горения и взрыва. М.: Наука, 1980 – 478 с.
2. В.В. Померанцев, К.М. Арефьев, Д.Б. Ахмедов и др. Основы практической теории горения. Л.: Энергоатомиздат, Ленингр. отд-ие, 1986 – 309 с.
3. Гришин А.М. Математическое моделирование лесных пожаров и новые способы борьбы с ними. – Новосибирск: Наука, Сиб. Отд-ие, 1992. – 408 с.

Дополнительная литература
1. Концепция развития горения и взрыва как области научно-технического прогресса. Черноголовка: Территория, 2001.
2. Алексеев Б.В., Гришин А.М. Курс лекций по аэротермохимии. Часть 1. Элементы кинетической теории, термодинамики и химической кинетики. Часть 2. Элементы строгой теории коэффициентов переноса, теория переноса энергии излучением и основная система уравнений аэротермохимии. Томск: Изд-во Том. ун-та. 1971.
3. Волокитина А.В., Софронов М.А. Классификация и картографирование растительных горючих материалов. Новосибирск: Изд-во Наука, Сиб. отд-е РАН, 2002 – 306 с. 

Связанные факты

Связанные новости

Связанные статьи


Войдите или зарегистрируйтесь, чтобы отправлять комментарии

Друзья сайта

  • Мир тайн — сайт о таинственном
  • Activite-Paranormale
  • UFOlats
  • Новый Бестиарий
  • The Field Reports
  • UFO Meldpunt Nederland
  • GRUPO DE ESTUDOS DE UFOLOGIA CIENTÍFICA
  • Паранормальная наука, наука об аномалиях
  • Новости уфологии
  • UFO Insights
  • Mundo Ovnis

Внимание!

18+

Сайт содержит материалы, не рекомендуемые для просмотра впечатлительным людям.

Орфографическая ошибка в тексте:
Чтобы сообщить об ошибке, нажмите кнопку "Отправить сообщение об ошибке". Также вы можете добавить свой комментарий.